113 research outputs found

    The z < 1.2 optical luminosity function from a sample of ∼410,000 galaxies in Boötes

    Get PDF
    Using a sample of ~410,000 galaxies to a depth of IAB=24 over 8.26 deg2 in the Boötes field (~10 times larger than the z~1 luminosity function (LF) studies in the prior literature), we have accurately measured the evolving B-band LF of red galaxies at z&lt;1.2 and blue galaxies at z&lt;1.0 In addition to the large sample size, we utilize photometry that accounts for the varying angular sizes of galaxies, photometric redshifts verified with spectroscopy, and absolute magnitudes that should have very small random and systematic errors. Our results are consistent with the migration of galaxies from the blue cloud to the red sequence as they cease to form stars and with downsizing in which more massive and luminous blue galaxies cease star formation earlier than fainter less massive ones. Comparing the observed fading of red galaxies with that expected from passive evolution alone, we find that the stellar mass contained within the red galaxy population has increased by a factor of ~3.6 from z~1.1 to z~0.1 The bright end of the red galaxy LF fades with decreasing redshift, with the rate of fading increasing from ~0.2 mag per unit redshift at z = 1.0 to ~0.8 at z = 0.2. The overall decrease in luminosity implies that the stellar mass in individual highly luminous red galaxies increased by a factor of ~2.2 from z = 1.1 to z = 0.1

    Malarial Retinopathy in Bangladeshi Adults

    Get PDF
    To establish if assessment of malarial retinopathy in adult malaria using ophthalmoscopy by non-ophthalmologists has clinical and prognostic significance, 210 Bangladeshi adults were assessed by both direct and indirect ophthalmoscopy; 20 of 20 healthy subjects and 20 of 20 patients with vivax malaria showed no retinal changes, whereas in patients with falciparum malaria, indirect ophthalmoscopy revealed malarial retinopathy (predominantly retinal hemorrhages) in 18 of 21 (86%) fatal, 31 of 75 (41%) cerebral, 16 of 64 (25%) non-cerebral but severe, and 1 of 31 (3%) uncomplicated cases. Direct ophthalmoscopy missed retinopathy in one of these cases and found fewer retinal hemorrhages (mean difference = 3.09; 95% confidence interval = 1.50–4.68; P < 0.0001). Severity of retinopathy increased with severity of disease (P for trend < 0.0001), and renal failure, acidosis, and moderate/severe retinopathy were independent predictors of mortality by both ophthalmoscopic techniques. Direct ophthalmoscopy by non-ophthalmologists is an important clinical tool to aid diagnosis and prognosis in adults with severe malaria, and indirect ophthalmoscopy by non-ophthalmologists, although more sensitive, provides minimal additional prognostic information

    The Clustering and Halo Masses of Star Forming Galaxies at z<1

    Full text link
    We present clustering measurements and halo masses of star forming galaxies at 0.2 < z < 1.0. After excluding AGN, we construct a sample of 22553 24 {\mu}m sources selected from 8.42 deg^2 of the Spitzer MIPS AGN and Galaxy Evolution Survey of Bo\"otes. Mid-infrared imaging allows us to observe galaxies with the highest star formation rates (SFRs), less biased by dust obscuration afflicting the optical bands. We find that the galaxies with the highest SFRs have optical colors which are redder than typical blue cloud galaxies, with many residing within the green valley. At z > 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L_TIR > 10^11 Lsun) and is comprised entirely of LIRGs and ultra-luminous infrared galaxies (ULIRGs, L_TIR > 10^12 Lsun) at z > 0.6. We observe weak clustering of r_0 = 3-6 Mpc/h for almost all of our star forming samples. We find that the clustering and halo mass depend on L_TIR at all redshifts, where galaxies with higher L_TIR (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M_halo ~ 10^12.9 Msun/h. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star forming galaxy samples to their local descendants. Most star forming galaxies at z < 1.0 are the progenitors of L < 2.5L* blue galaxies in the local universe, but star forming galaxies with the highest SFRs (L_TIR >10^11.7 Lsun) at 0.6<z<1.0 are the progenitors of early-type galaxies in denser group environments.Comment: 18 pages, 16 figures, 2 tables. Accepted for publication in the Astrophysical Journa

    Neonatal brain tissue classification with morphological adaptation and unified segmentation

    Get PDF
    Measuring the distribution of brain tissue types (tissue classification) in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation), which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM) software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF), hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation) acquired at 30 weeks’ corrected gestational age (n= 5), coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5) and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5). The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR) group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation) acquired shortly after birth (n= 12), preterm infants acquired at term-equivalent age (n= 12), and healthy term-born infants (born ≥38 weeks’ gestation) acquired within the first nine days of life (n= 12). For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for the cortical gray matter for coronal images acquired at 30 weeks. This demonstrates that MANTiS’ performance is competitive with existing techniques. For the WUNDeR dataset, mean Dice scores comparing MANTiS with manually edited segmentations demonstrated good agreement, where all scores were above 0.75, except for the hippocampus and amygdala. The results show that MANTiS is able to segment neonatal brain tissues well, even in images that have brain abnormalities common in preterm infants. MANTiS is available for download as an SPM toolbox from http://developmentalimagingmcri.github.io/mantis

    Developing an indicator of productive potential to assess land use suitability in New Zealand

    Get PDF
    The Land Use Suitability (LUS) concept informs decision-making by stakeholders with information about the economic and environmental consequences of land use choices. LUS is composed of three indicators describing the inherent productive and economic potential of land parcels (productive potential), the contribution of a land parcel to lose contaminants relative to other land parcels (relative contribution), and the load of contaminants lost compared to the load that ensures that environmental objectives are met (pressure). This paper outlines an improved indicator of productive potential (PP). We outline the four layers of information that comprise PP for a land parcel: (1) Feasibility, which defines whether the productivity and quality of a crop is enough to allow the land use to be undertaken; (2) Yield, which is the amount of a product or crop that can be grown; (3) Economic returns, given the yield and other requirements for the land parcel; and (4) Economic Importance, which combines information about the economic returns and the probability of a land use being undertaken. These layers can be combined into a single PP indicator of the value of the land for economic use. The PP indicator can be expressed continuously or categorically and mapped at a national scale. When combined with the Relative Contribution and Pressure indicators in the LUS system, it allows for identification of areas which are most suitable for intensification by providing for a direct comparison of the economic and environmental outcomes

    Uncovering the neuroanatomical correlates of cognitive, affective and conative theory of mind in paediatric traumatic brain injury: a neural systems perspective

    Get PDF
    Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure&ndash;function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n&thinsp;=&thinsp;103; typically developing (TD) children: n&thinsp;=&thinsp;34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems&mdash;the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are discussed in relation to neurocognitive models of ToM. We conclude that detection of sub-acute volumetric abnormalities of large-scale neural networks and their hub regions may aid in the early identification of children at risk for chronic social-cognitive impairment

    Genomics of Drug Sensitivity in Cancer (GDSC): a Resource for Therapeutic Biomarker Discovery in Cancer Cells

    Get PDF
    Alterations in cancer genomes strongly influence clinical responses to treatment and in many instances are potent biomarkers for response to drugs. The Genomics of Drug Sensitivity in Cancer (GDSC) database (www.cancerRxgene.org) is the largest public resource for information on drug sensitivity in cancer cells and molecular markers of drug response. Data are freely available without restriction. GDSC currently contains drug sensitivity data for almost 75 000 experiments, describing response to 138 anticancer drugs across almost 700 cancer cell lines. To identify molecular markers of drug response, cell line drug sensitivity data are integrated with large genomic datasets obtained from the Catalogue of Somatic Mutations in Cancer database, including information on somatic mutations in cancer genes, gene amplification and deletion, tissue type and transcriptional data. Analysis of GDSC data is through a web portal focused on identifying molecular biomarkers of drug sensitivity based on queries of specific anticancer drugs or cancer genes. Graphical representations of the data are used throughout with links to related resources and all datasets are fully downloadable. GDSC provides a unique resource incorporating large drug sensitivity and genomic datasets to facilitate the discovery of new therapeutic biomarkers for cancer therapies

    Pulmonary Deposition of Radionucleotide-Labeled Palivizumab: Proof-of-Concept Study

    Get PDF
    Objective: Current prevention and/or treatment options for respiratory syncytial virus (RSV) infections are limited as no vaccine is available. Prophylaxis with palivizumab is very expensive and requires multiple intramuscular injections over the RSV season. Here we present proof-of-concept data using nebulized palivizumab delivery as a promising new approach for the prevention or treatment of severe RSV infections, documenting both aerosol characteristics and pulmonary deposition patterns in the lungs of lambs. Design: Prospective animal study. Setting: Biosecurity Control Level 2-designated large animal research facility at the Murdoch Children’s Research Institute, Melbourne, Australia. Subjects: Four weaned Border-Leicester/Suffolk lambs at 5 months of age. Interventions: Four lambs were administered aerosolized palivizumab conjugated to Tc-99m, under gaseous anesthesia, using either the commercially available AeroNeb Go® or the investigational HYDRA device, placed in-line with the inspiratory limb of a breathing circuit. Lambs were scanned in a single-photon emission computed tomography (SPECT/CT) scanner in the supine position during the administration procedure. Measurements and Main Results: Both the HYDRA and AeroNeb Go® produced palivizumab aerosols in the 1–5 µm range with similar median (geometric standard deviation and range) aerosol droplet diameters for the HYDRA device (1.84 ± 1.40 μm, range = 0.54–5.41μm) and the AeroNeb Go® (3.07 ± 1.56 μm, range = 0.86–10 μm). Aerosolized palivizumab was delivered to the lungs at 88.79–94.13% of the total aerosolized amount for all lambs, with a small proportion localized to either the trachea or stomach. No difference between devices were found. Pulmonary deposition ranged from 6.57 to 9.25% of the total dose of palivizumab loaded in the devices, mostly in the central right lung. Conclusions: Aerosolized palivizumab deposition patterns were similar in all lambs, suggesting a promising approach in the control of severe RSV lung infections
    • …
    corecore